0=16x^2+80x-2481

Simple and best practice solution for 0=16x^2+80x-2481 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16x^2+80x-2481 equation:



0=16x^2+80x-2481
We move all terms to the left:
0-(16x^2+80x-2481)=0
We add all the numbers together, and all the variables
-(16x^2+80x-2481)=0
We get rid of parentheses
-16x^2-80x+2481=0
a = -16; b = -80; c = +2481;
Δ = b2-4ac
Δ = -802-4·(-16)·2481
Δ = 165184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{165184}=\sqrt{64*2581}=\sqrt{64}*\sqrt{2581}=8\sqrt{2581}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{2581}}{2*-16}=\frac{80-8\sqrt{2581}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{2581}}{2*-16}=\frac{80+8\sqrt{2581}}{-32} $

See similar equations:

| 3/7d=5/21 | | 6a-15=3a | | x-5/3+10=40 | | 7+6(1+4n)=157 | | 0.25w=2.25 | | 10v=-110 | | -17+q8=13 | | 0=16x^+80x-2481 | | 2/5x-2=6 | | -10(5x+10)=300 | | 6x(×-2)=5 | | 18.7+n=10.25+11.7 | | x+7/5=-11 | | 250s+15=200+20 | | 126=7x-7(5x+22) | | n-1.43=1.82 | | 256,68x+267,18x+207,78x+216,24x=355571 | | -2x+6(-x+21)=-154 | | 3y3-27y=0 | | 4n=8+5 | | y2=72+ | | 3999+45a=4999+40a | | 6d-11/2=2d-13/2= | | -3-4r=-1 | | 7x+7(-4x+18)=21 | | 9z+8-5z=80-5z | | 5g+25=25 | | -3(y-4y)+9=-2(4y-y)+6+14y | | x=11/6=3 | | 4x+8=7.2+5x= | | 16x/11x=64 | | 25^2x+1=125^-x+2 |

Equations solver categories